

Mechanical Engineering Module Handbook

- Courses in English* -

- Finite Elements
- Industry Design Team Project (aerospace)
- Machine Cutting Technology
- Systematic Product Development
- Technical Thermodynamics
- Thermal Energy Systems

Department of Mechanical Engineering & Production Management (September 2019)

^{*} courses are offered in the summer semester (March – July) only Faculty of Engineering & Computer Science. Exchange students may also be able to take classes from other programmes in this faculty (aeronautical engineering, automotive engineering, information engineering) if lecture schedules and capacity allow.

Degree programme: Mechanical Engineering (Bachelor)		Responsible Lecturer: Prof. I	DrIng. Thomas Grätsch
Work load: 180 hours	Lecture hours per week: 4		ECTS Credits: 6
Course objectives: Technical and methodology sk finite element standard softwa mechanical principles of the fin According to the specifics of m materials, thermal elasticity, m engineering mechanics and nu engineering mechanics are tau finite element models need to second part, more advanced fi systems (e.g. Ansys, Adina or M Social skills: In seminar discussi problems. In the laboratory we dependently and autonomous documentation of the used pro assignments, the students are Selected topics will be provided	are and to critically evalu- nite element method and nechanical engineering, i odeling aspects and dyn merical methods will be ught. Laboratory assignm be programmed with a nite element analysis tas MSC/Nastran). tons, the students/particip by through special trainin ogram tools. For the con encouraged to cooperat	ate the calculated results. In d its programming implement in the lectures it will be focus amic analysis. In seminar disc repeated and enhanced. Sel nents are divided into two pa suitable software (e.g. in Ma sks will be carried out using c ipants will be motivated to d pants will be encouraged and ing materials as well as the int npletion of their laboratory a se within small groups.	the lectures, basic tation will be taught. sed on mechanics of cussions, foundations of ected topics of advanced rts. In the first part, simple tlab, Mathcad). In the commercial finite element iscuss technical d enabled to work self- troduction to the nd homework
Content: 1. Introduction and motivation pre-processing, solution, post- 2. Truss elements: basic different matrix and matrix assembly, pro- global transformations, finite effects 3. Beam elements: basic different stiffness matrix and matrix assemption global transformations, equivalent	processing ential equations, strong a rinciple of virtual displace element analysis of trusse ential equations, stresses embly, three- dimension	and weak form of differentia ements, shape functions, hig es s and strains, principle of virt	l equations, local stiffness her-order elements, local- ual displacements, local
 4. Modeling aspects: modeling elements), assessment of finite quality, treatment of singularit 5. Shell, plate, and slab element domains, linear shape function coordinate transformations, cla plane strain state, kinematics of conforming plate bending element 	g of supports and hinges e element solutions, prac- ies nts (thin-walled structure ns, higher-order shape fu assification and analytica of plate bending element	es): approximation on two-di inctions, isoparametric eleme al treatment of thin-walled st ts, local stiffness matrix and i	assure model and mesh mensional element ents, local-global ructures, plane stress state,
6. Three-dimensional elements higher-order shape functions, elasticity, brick elements and t	: approximation on thre displacements and strair	e-dimensional element doma	
 7. Finite elements in structural eigenmodes and eigenfrequen 8. Summary and outlook: linea structure-interactions and multiplication 	dynamics: vibrations of cies, forced vibrations, n rr and nonlinear analysis,	nass matrices for trusses and	beams
About didactics and work loa Seminars, computer simulation . 2.5		ab. 72 hours lectures/lab and 10	08 hours self-study
Requirements for participatic	on:		Course language:

Type of exam:

Written exam

Requirements for credit point allocation:

successful completion of written exam and laboratory work

Literature:

- Bathe, Finite-Elemente-Methoden, Springer-Verlag 2002 •
- Bathe, Finite Element Procedures, 2nd edition, 2015 •
- Fish und Belytschko, A first course in FEM, J. Wiley 2007 •
- Steinke, Finite-Elemente-Methode, Springer-Verlag 2010 Gross et al., Technische Mechanik 4, Springer-Verlag 2007 •
- •

Course Name: Machine Cutting Technology

Degree programme:	
Mechanical Engineering (Bachelor)	

Responsible Lecturer: Prof. Dr.-Ing. Dietmar Pähler

Work load: 150 hours

Lecture hours per week: 3 (plus 1 hr lab)

ECTS Credits: 5

Course objectives:

Building on the basic knowledge regarding the various manufacturing technologies classified within the DIN 8580 and previously acquired by the students during their foundation studies, the focus is set on the most important machining technologies with geometrically defined as well as undefined cutting edges. Most relevant cutting tool materials, geometries and process parameters are discussed regarding their influence on part quality, process times as well as economical aspects. Application related pros and cons are discussed. Resulting there from, the students will be enabled to evaluate in a more profound manner the applicability of the discussed machining technologies and to select an appropriate technology for a given task.

Contents:

- 1. Cutting with geometrically defined cutting edges
- Tool engagement situation; cutting angles; machining criteria: chip formation, surface generation, mechanical loads, tool wear; cutting tool materials; methods for calculation of process forces, tool life and machining cost with focus on turning operations; basic process optimisation measures
- Technology overview: Turning, drilling, milling, reaming, broaching, sawing; particular features of drilling and milling processes
- 2. Cutting with geometrically undefined cutting edges (grinding)
- Grinding basics: Process overview and nomenclature, grinding principles
- Grinding tools: Specification of conventional and super abrasive grinding wheels (e.g. grit type, size, concentration; bond; wheel geometry)
- Grinding technology: Influence of tool and process parameters on process results for important cylindrical and surface grinding processes
- Dressing of grinding wheels: Techniques, tools, parameters, calculations

About didactics and work load distribution:

Machining Technology lecture in seminar form (3 hrs/week) and Machining Technology lab (1 hr/week); self-study 84 hrs

Requirements for participation: Practical company placements with focus on machining technology, basics in manufacturing engineering	Course language: English
Type of exam: Written or oral exam	
Requirements for credit point allocation: Successful completion of exam	

Literature:

- Fritz Klocke and Wilfried König; Manufacturing Technology in 5 volumes; Publishers Springer Vieweg (in German) Volume 1: Turning, milling, drilling; ISBN 978-3-540-23458-6 Volume 2: Grinding, honing, lapping; ISBN 978-3-540-23496-9
- Eberhard Paucksch e.a.; Machining Technology; 12. edition, 2008; Publishers Vieweg+Teubner (in German); ISBN 978-3-8348-0279-8
- J. Paulo Davim; Modern machining technology a practical guide Woodhead Pub, 2011 (in English)

Course Name: Systematic Product Development				
Degree programme: Mechanical Engineering (Bachelor)		Responsible Lecturer: Prof. DrIng. Meyer-Eschenbach		
Work load: 150 hours	rk load: 150 hours Lecture hours per week: 4		ECTS Credits: 5	
Course objectives: The students will be able to understand the product development process including typical process stages and milestones. Then the students will know the most important methods and they will be able to use these methods in different stages of engineering design. These knowledges will be applied and discussed in different exercises in tutorials. The students know the tasks of a design engineer in industry and the most important strategies of collaboration in project teams. In this context different targets of departments in international companies can be found, discussed and analysed.				
developing of working sMethods for selection atMethods for embodiment	, workflow during the c on of the task: equirements design: gn, abstracting to ident tructures, search for sol nd evaluation nt design: nt design, basic rules of			
 fault-tree analysis (FTA), failure mode and analysis (FMEA) Developing size rages and modular products Distributed development 				
About didactics and work loa Seminar (72 hours lecture, 78 hours				
Requirements for participatio Technical drawing, engineering desi		ients (KonA,B)	Course language: English	
Type of exam: Written exam				
Requirements for credit point Successful completion of the writter		n in class		
Heidelberg, 2007 Pahl, G.; Beitz, W; Feldhusen, Anwendung, 7. Aufl., Spring Pahl, G.; Beitz, W; Feldhusen, Anwendung, 8. Aufl., Spring	J.; Grote, KH.: Konstruktion ger Verlag. Berlin, Heidelberg, J.; Grote, KH.: Konstruktion ger Verlag. Berlin, Heidelberg,	slehre: Grundlagen erfolgreicher Pro	duktentwicklung; Methoden und duktentwicklung; Methoden und	

Course Name: Technical T	hermodynamics 1		
Degree programme: Mechanical Engineering (Bachelor)		Responsible Lecturer: Prof. DrIng. Achim Schmidt	
Work load: 150 hours	Lecture hours per wo	eek: 4	ECTS Credits: 5
Course objectives: The students will be qualified t project stages planning, calcula conversion and the quality of d knowledge of thermodynamic expertise as well as methodical by using practical examples. In focus on the essentials is sharper Contents: Introduction Task of thermodynamic Energy and work System and state: system bounda Thermodynamic equilibrium Equations of state Thermal equation of state, chang	ation, design and opera- lifferent forms of energy properties of different v competence. Methods order to transfer thermo- ened.	tion. They shall understand t y. Furthermore, they will hav working fluids. The module's for thermodynamical calcula odynamic knowledge into tea es, homogeneous/heterogeneous	he meaning of energy e a consolidated task is to mediate tions will be developed chnical applications, the systems, ideal gas vs. real fluid
 First law of thermodynamic (close caloric equation of state: enthalpy Second law of thermodynamic (El processes, heat transfer phenomena Energy/exergy loaa Components and thermodynamic Stirlingmachine, Joule process) 	d systems, steady/unsteady , entropy, Internal energy ntropy, entropy balances for a, dissipation, thermal engir	y open systems, thermodynamic o open and closed systems, irreve ne, T,s-diagram)	cycles rsibility of transient balancing
About didactics and work loa Seminar	d distribution:		
Requirements for participatio Mathematics 1 and 2	n:		Course language: English
Type of exam: Written exam			
Requirements for credit point Successful completion of written exa			
 Baehr, H. D.; Kabelac, S.: Ther Springer-Verlag 2006. Cerbe, G.; Wilhelms, G.: Einfül 14. Auflage. München, Wien: 	modynamik. Grundlagen und nrung in die Thermodynamik. Carl Hanser Verlag 2005. ıli, M.: Grundlagen der Techni	nger Verlag, ISBN 978-3-030-20396-2 technische Anwendungen. 13. Aufl Von den Grundlagen zur technische ischen Thermodynamik. 5. Auflage.	age. Berlin, Heidelberg: en Anwendung.

Course Name: Thermal En		ſ	
Degree programme: Mechanical Engineering (Bachelor)		Responsible Lecturer: Prof. Dr. Thomas Flower	
Work load: 150 hours	Lecture hours per we	e ek: 4	ECTS Credits: 5
 Course objectives: Appreciation of state of the ar supply. Students learn to apply modern power systems. Students are enabled to skillfu energy supply options and chem energy conversion and chem energy conversion Energy conversion in th Simplified thermodynar and their application Analysis of losses during Combustion processes of enthalpy and entropy Calculation of exhaust of Calculation of adiabation temperature Electrochemical analysis 2. Economic evaluation Calculation of cost-of-e components Comparison of different options 	y thermodynamic, numer lly apply carefully choser eck the plausibility of con ical fundamentals of ermal power plants nic comparative models g energy conversion (heating value, absolute , air ratio) composition combustion s of fuel cells	 rical and economic technique n plant and component balar n plex computational tools. 3. Component design prover plants Steam and gas turk Micro-turbines Stationary reciproce Fuel cells (PEMFC, Sectionary reciproce Steam generators 4. Operation of energy section Environmental imp Part load operation Flexibility of dispate Combined heat and 5. Numerical analysis 	es to evaluate the merits of inces to analyze potential rinciples and analysis for bines ating engines (Diesel, Stirling) SOFC) systems act n ch d electrical power supply s of water/steam and gases of compressors, tive preheating, sses of power systems
About didactics and work loa Seminars, computer simulation usin Requirements for participatic	g MatLab, e-Learning with	EMIL. Attendance 4h per week	(72h), self study (78h) Course language:
Good understanding of Mathematics, Thermodynamics and Matlab Type of exam:		English	
Written or Oral exam			
Requirements for credit poin Active participation in group work a		pletion of oral exam, use of Ma	tLab
 Dezentrale Energiesysteme, N Technische Thermodynamik, Energietechnik, Systeme zur E Schelling, Vieweg + Teubner Stationäre Gasturbinen, Chris Thermische Turbomaschinen, Dampfturbinen, Fritz Dietzel, 	eue Technologien im liberalisie Fran Bosnjakovic, K.F. Knoche, inergieumwandlung, Kompakt Verlag tof Lechner, Jörg Seume, Sprin Walter Traupel, Springer Verla Carl Hanser Verlag, 1980	wissen für Studium und Beruf, Zaho Iger Verlag (eBook bei HIBS)	enbourg Verlag ransky, Allelein, Bollin, Oehler,

- Microturbines, Application for Distributed Energy Systems, Claire Soares, 2007, Butterworth-Heinemann/Elsevier, (eBook bei HIBS)
- Blockheizkraftwerke Ein Leitfaden für den Anwender, BINE- Informationspaket, Wolfgang Suttor, FIZ Karlsruhe, 2009 (HIBS)
- Essential MatLab for Engineers and Scientists, Brian H. Hahn, Daniel, T. Valentine, Elsevier, Academic Press, 2013